3.495 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4}}{x^8} \, dx\)

Optimal. Leaf size=375 \[ -\frac{b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{b} c-21 \sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 a^{5/4} \sqrt{a+b x^4}}-\frac{2 b^{5/4} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 a^{3/4} \sqrt{a+b x^4}}+\frac{2 b^{3/2} e x \sqrt{a+b x^4}}{5 a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{1}{420} \sqrt{a+b x^4} \left (\frac{60 c}{x^7}+\frac{70 d}{x^6}+\frac{84 e}{x^5}+\frac{105 f}{x^4}\right )-\frac{2 b c \sqrt{a+b x^4}}{21 a x^3}-\frac{b d \sqrt{a+b x^4}}{6 a x^2}-\frac{2 b e \sqrt{a+b x^4}}{5 a x}-\frac{b f \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{4 \sqrt{a}} \]

[Out]

-(((60*c)/x^7 + (70*d)/x^6 + (84*e)/x^5 + (105*f)/x^4)*Sqrt[a + b*x^4])/420 - (2
*b*c*Sqrt[a + b*x^4])/(21*a*x^3) - (b*d*Sqrt[a + b*x^4])/(6*a*x^2) - (2*b*e*Sqrt
[a + b*x^4])/(5*a*x) + (2*b^(3/2)*e*x*Sqrt[a + b*x^4])/(5*a*(Sqrt[a] + Sqrt[b]*x
^2)) - (b*f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*Sqrt[a]) - (2*b^(5/4)*e*(Sqrt[a
] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[
(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)*Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*c
- 21*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)
^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*a^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.93181, antiderivative size = 375, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 12, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4 \[ -\frac{b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{b} c-21 \sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 a^{5/4} \sqrt{a+b x^4}}-\frac{2 b^{5/4} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 a^{3/4} \sqrt{a+b x^4}}+\frac{2 b^{3/2} e x \sqrt{a+b x^4}}{5 a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{1}{420} \sqrt{a+b x^4} \left (\frac{60 c}{x^7}+\frac{70 d}{x^6}+\frac{84 e}{x^5}+\frac{105 f}{x^4}\right )-\frac{2 b c \sqrt{a+b x^4}}{21 a x^3}-\frac{b d \sqrt{a+b x^4}}{6 a x^2}-\frac{2 b e \sqrt{a+b x^4}}{5 a x}-\frac{b f \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{4 \sqrt{a}} \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^8,x]

[Out]

-(((60*c)/x^7 + (70*d)/x^6 + (84*e)/x^5 + (105*f)/x^4)*Sqrt[a + b*x^4])/420 - (2
*b*c*Sqrt[a + b*x^4])/(21*a*x^3) - (b*d*Sqrt[a + b*x^4])/(6*a*x^2) - (2*b*e*Sqrt
[a + b*x^4])/(5*a*x) + (2*b^(3/2)*e*x*Sqrt[a + b*x^4])/(5*a*(Sqrt[a] + Sqrt[b]*x
^2)) - (b*f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*Sqrt[a]) - (2*b^(5/4)*e*(Sqrt[a
] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[
(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)*Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*c
- 21*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)
^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*a^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**8,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 0.809837, size = 283, normalized size = 0.75 \[ \frac{-8 b^{3/2} x^7 \sqrt{\frac{b x^4}{a}+1} \left (21 \sqrt{a} e-5 i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+168 \sqrt{a} b^{3/2} e x^7 \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )-\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (\left (a+b x^4\right ) \left (a (60 c+7 x (10 d+3 x (4 e+5 f x)))+2 b x^4 (20 c+7 x (5 d+12 e x))\right )+105 \sqrt{a} b f x^7 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )\right )}{420 a x^7 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^8,x]

[Out]

(-(Sqrt[(I*Sqrt[b])/Sqrt[a]]*((a + b*x^4)*(2*b*x^4*(20*c + 7*x*(5*d + 12*e*x)) +
 a*(60*c + 7*x*(10*d + 3*x*(4*e + 5*f*x)))) + 105*Sqrt[a]*b*f*x^7*Sqrt[a + b*x^4
]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])) + 168*Sqrt[a]*b^(3/2)*e*x^7*Sqrt[1 + (b*x^4
)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 8*b^(3/2)*((-5*I)*S
qrt[b]*c + 21*Sqrt[a]*e)*x^7*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqr
t[b])/Sqrt[a]]*x], -1])/(420*a*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x^7*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.027, size = 385, normalized size = 1. \[ -{\frac{c}{7\,{x}^{7}}\sqrt{b{x}^{4}+a}}-{\frac{2\,bc}{21\,a{x}^{3}}\sqrt{b{x}^{4}+a}}-{\frac{2\,{b}^{2}c}{21\,a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{d}{6\,a{x}^{6}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}-{\frac{e}{5\,{x}^{5}}\sqrt{b{x}^{4}+a}}-{\frac{2\,be}{5\,ax}\sqrt{b{x}^{4}+a}}+{{\frac{2\,i}{5}}e{b}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{2\,i}{5}}e{b}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{f}{4\,a{x}^{4}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}-{\frac{fb}{4}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}+{\frac{fb}{4\,a}\sqrt{b{x}^{4}+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^8,x)

[Out]

-1/7*c/x^7*(b*x^4+a)^(1/2)-2/21*b*c*(b*x^4+a)^(1/2)/a/x^3-2/21*c/a*b^2/(I/a^(1/2
)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)
/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/6*d/a/x^6*(b*x^4+a)^
(3/2)-1/5*e/x^5*(b*x^4+a)^(1/2)-2/5*b*e*(b*x^4+a)^(1/2)/a/x+2/5*I*e/a^(1/2)*b^(3
/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/
2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-2/5*I*e/a
^(1/2)*b^(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^
(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I
)-1/4*f/a/x^4*(b*x^4+a)^(3/2)-1/4*f*b/a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))
/x^2)+1/4*f*b/a*(b*x^4+a)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{8}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{8}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8, x)

_______________________________________________________________________________________

Sympy [A]  time = 8.68739, size = 192, normalized size = 0.51 \[ \frac{\sqrt{a} c \Gamma \left (- \frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{7}{4}, - \frac{1}{2} \\ - \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac{3}{4}\right )} + \frac{\sqrt{a} e \Gamma \left (- \frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{4}, - \frac{1}{2} \\ - \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac{1}{4}\right )} - \frac{\sqrt{b} d \sqrt{\frac{a}{b x^{4}} + 1}}{6 x^{4}} - \frac{\sqrt{b} f \sqrt{\frac{a}{b x^{4}} + 1}}{4 x^{2}} - \frac{b^{\frac{3}{2}} d \sqrt{\frac{a}{b x^{4}} + 1}}{6 a} - \frac{b f \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{4 \sqrt{a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**8,x)

[Out]

sqrt(a)*c*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4*
x**7*gamma(-3/4)) + sqrt(a)*e*gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**4*ex
p_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) - sqrt(b)*d*sqrt(a/(b*x**4) + 1)/(6*x**4)
- sqrt(b)*f*sqrt(a/(b*x**4) + 1)/(4*x**2) - b**(3/2)*d*sqrt(a/(b*x**4) + 1)/(6*a
) - b*f*asinh(sqrt(a)/(sqrt(b)*x**2))/(4*sqrt(a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{8}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^8, x)